

1

USB BF70x Audio 1.0 Library v.1.1 Users Guide
Users Guide Revision 1.2

For Use With Analog Devices ADSP-BF70x Series Processors

Closed Loop Design, LLC

748 S MEADOWS PKWY STE A-9-202

Reno, NV 89521

support@cld-llc.com

mailto:support@cld-llc.com

2

Table of Contents
Disclaimer ... 4

Introduction ... 4

USB Background .. 4

CLD BF70x Audio 1.0 Library USB Enumeration Flow Chart ... 5

CLD BF70x Audio 1.0 Library Isochronous OUT Flow Chart .. 7

CLD BF70x Audio 1.0 Library Isochronous IN Flow Chart .. 8

USB Audio Device Class v1.0 Background ... 9

Isochronous Endpoint Bandwidth Allocation ... 10

USB Audio Device Class v1.0 Control Endpoint Requests .. 10

Dependencies .. 13

Memory Footprint ... 13

CLD BF70x Audio 1.0 Library Scope and Intended Use ... 13

CLD Audio 1.0 Example v1.1 Description ... 13

CLD BF70x Audio 1.0 Library API ... 14

cld_bf70x_audio_1_0_lib_init .. 14

cld_bf70x_audio_1_0_lib_main ... 25

cld_bf70x_audio_1_0_lib_transmit_audio_data ... 25

cld_bf70x_audio_1_0_lib_resume_paused_audio_data_transfer ... 27

cld_bf70x_audio_1_0_lib_resume_paused_control_transfer ... 27

cld_ lib_usb_connect .. 28

cld_ lib_usb_disconnect .. 28

cld_time_get .. 29

cld_time_passed_ms ... 29

cld_console ... 30

Using the ADSP-BF707 Ez-Board ... 32

Connections: ... 32

Note about using UART0 and the FTDI USB to Serial Converter ... 32

Adding the CLD BF70x Audio 1.0 Library to an Existing CrossCore Embedded Studio Project 33

Using the ADI Audio EI3 Extender .. 35

Connections: ... 35

Audio EI3 Extender Board Support Package (Required by CLD Audio Example) 36

User Firmware Code Snippets .. 37

3

main.c .. 37

user_audio.c .. 38

4

Disclaimer
This software is supplied "AS IS" without any warranties, express, implied or statutory, including but not

limited to the implied warranties of fitness for purpose, satisfactory quality and non-infringement. Closed

Loop Design LLC extends you a royalty-free right to reproduce and distribute executable files created

using this software for use on Analog Devices Blackfin family processors only. Nothing else gives you

the right to use this software.

Introduction

The Closed Loop Design (CLD) Audio 1.0 library creates a simplified interface for developing a USB

Audio v1.0 device using the Analog Devices ADSP-BF707 EZ-Board and Analog Devices Audio EI3

Extender Board. The CLD BF70x Audio 1.0 library also includes support for a serial console and timer

functions that facilitate creating timed events quickly and easily. The library's User application interface

is comprised of parameters used to customize the library's functionality as well as callback functions used

to notify the User application of events. These parameters and functions are described in greater detail in

the CLD BF70x Audio 1.0 Library API section of this document.

USB Background
The following is a very basic overview of some of the USB concepts that are necessary to use the CLD

BF70x Audio 1.0 Library. However, it is still recommended that developers have at least a basic

understanding of the USB 2.0 protocol. The following are some resources to refer to when working with

USB and USB Audio v1.0:

 The USB 2.0 Specification: http://www.usb.org/developers/docs/usb20_docs/

 The USB Device Class Definition for Audio Devices:

http://www.usb.org/developers/docs/devclass_docs/audio10.pdf

 The USB Device Class Definition for Audio Data Formats:

http://www.usb.org/developers/docs/devclass_docs/frmts10.pdf

 USB in a Nutshell: A free online wiki that explains USB concepts.

http://www.beyondlogic.org/usbnutshell/usb1.shtml

 "USB Complete" by Jan Axelson ISBN: 1931448086

USB is a polling based protocol where the Host initiates all transfers, all USB terminology is from the

Host's perspective. For example an 'IN' transfer is when data is sent from a Device to the Host, and an

'OUT' transfer is when the Host sends data to a Device.

The USB 2.0 protocol defines a basic framework that devices must implement in order to work correctly.

This framework is defined in the Chapter 9 of the USB 2.0 protocol, and is often referred to as the USB

'Chapter 9' functionality. Part of the Chapter 9 framework is standard USB requests that a USB Host uses

to control the Device. Another part of the Chapter 9 framework is the USB Descriptors. These USB

Descriptors are used to notify the Host of the Device's capabilities when the Device is attached. The USB

Host uses the descriptors and the Chapter 9 standard requests to configure the Device. This process is

called USB Enumeration. The CLD BF70x Audio 1.0 Library includes support for the USB standard

requests and USB Enumeration using some of the parameters specified by the User application when

initializing the library. These parameters are discussed in the cld_bf70x_audio_1_0_lib_init section of

this document. The CLD BF70x Audio 1.0 Library facilitates USB enumeration and is Chapter 9

compliant without User Application intervention as shown in the flow chart below. For additional

http://www.usb.org/developers/docs/usb20_docs/
http://www.usb.org/developers/docs/devclass_docs/audio10.pdf
http://www.usb.org/developers/docs/devclass_docs/frmts10.pdf
http://www.beyondlogic.org/usbnutshell/usb1.shtml

5

information on USB Chapter 9 functionality or USB Enumeration please refer to one of the USB

resources listed above.

CLD BF70x Audio 1.0 Library USB Enumeration Flow Chart

USB/External Event

CLD Bulk Library Firmware

User Firmware

USB Cable Connected or USB Bus Reset

Get Device Descriptor Request

Device Descriptor returned by Device with Vendor ID and

Product ID specified by the User Firmware

Set USB Address

USB Host Event

Set Blackfin’s USB Address

Get Configuration Descriptor Request

Configuration Descriptor retuned by the Device

Set Configuration

(CLD Audio 1.0 Library has 1 configuration)

Configures the Device

(Configured and enable any required endpoints)

Request String Descriptors

Return USB String Descriptors defined by the User

Firmware

Get Device Descriptor Request

Device Descriptor returned by Device with Vendor ID and

Product ID specified by the User Firmware

U
S

B
 E

n
u

m
e

ra
ti
o

n

All USB data is transferred using Endpoints that act as a source or sink for data based on the endpoint's

direction (IN or OUT). The USB protocol defines four types of Endpoints, each of which has unique

characteristics that dictate how they are used. The four Endpoint types are: Control, Interrupt, Bulk and

6

Isochronous. Data that is transmitted over USB is broken up into blocks of data called packets. For each

endpoint type there are restrictions on the allowed max packet size. The allowed max packet sizes also

vary based on the USB connection speed. Please refer to the USB 2.0 protocol for more information

about the max packet size supported by the four endpoint types.

The CLD BF70x Audio 1.0 Library uses Control and Isochronous endpoints, these endpoint types will be

discussed in more detail below.

A Control Endpoint is the only bi-directional endpoint type, and is typically used for command and status

transfers. A Control Endpoint transfer is made up of three stages (Setup Stage, Data Stage and Status

Stage). The Setup Stage sets the direction and size of the optional Data Stage. The Data Stage is where

any data is transferred between the Host and Device. The Status Stage gives the Device the opportunity to

report if an error was detected during the transfer. All USB Devices are required to include a default

Control Endpoint at endpoint number 0, referred to as Endpoint 0. Endpoint 0 is used to implement all

the USB Protocol defined Chapter 9 framework and USB Enumeration. In the CLD BF70x Audio 1.0

Library Endpoint 0 is also used to handle USB Audio Device Class v1.0 defined Set and Get requests.

These requests are discussed in more detail in the USB Audio Device Class v1.0 Background section of

this document

Isochronous Endpoints have the following characteristics which make them well suited for streaming

audio data:

 Guaranteed USB bandwidth with bounded latency

 Constant data rate as long as data is provided to the endpoint.

 In the event of a transport error there is no retrying.

These characteristics allow for streaming audio data to be transmitted with deterministic timing. In the

event of a USB transport error the audio data is dropped instead of being retried like a Bulk or Interrupt

endpoint. This allows the streaming audio data to remain in sync. The CLD BF70x Audio 1.0 Library

supports an Isochronous IN and Isochronous OUT endpoint, which are used to send and receive streaming

audio data with the USB Host, respectively.

The flow charts below give an overview of how the CLD BF70x Audio Library and the User firmware

interact to process Isochronous OUT and Isochronous IN transfers. Additionally, the User firmware code

snippets included at the end of this document provide a basic framework for implementing a USB Audio

v1.0 device using the CLD BF70x Audio 1.0 Library.

7

CLD BF70x Audio 1.0 Library Isochronous OUT Flow Chart

Isochronous OUT packet

Call User specified fp_audio_stream_data_received

 function with p_transfer_params->num_bytes = number of

received Isochronous OUT bytes

Set the p_transfer_params parameters to describe the

expected Isochronous OUT transfer

 num_bytes = the size of the Isochronous OUT transfer

 p_data_buffer =address of buffer to store num_bytes

of data

 fp_usb_out_transfer_complete = function to call when

the requested number of bytes is received

 fp_transfer_aborted_callback = function to call if the

transfer is terminated.

 transfer_timeout_ms = number of milliseconds to wait

for the transfer to complete before detecting a timeout

(0 = timeout disabled).

Return CLD_USB_TRANSFER_ACCEPT

Unload the Isochronous OUT packet from the Blackfin’s

endpoint FIFO to p_transfer_params->p_data_buffer

Requested p_transfer_prams->num_bytes

received?

Call User specified

p_transfer_params->fp_usb_out_transfer_complete

function

Exit Bulk OUT Rx ISR, and Wait for next Isochronous Out

packet Rx Interrupt

Isocronous Out Rx Interrupt

Return CLD_USB_DATA_GOOD if the received data is

valid, or CLD_USB_DATA_BAD_STALL to stall the

Isochronous OUT endpoint.

Exit Isochronous OUT Rx ISR

Yes

No

USB/External Event

CLD Library Firmware

User Firmware

USB Host Event

8

CLD BF70x Audio 1.0 Library Isochronous IN Flow Chart

Load the next the Iscochronos IN packet into the Blackfin’s

endpoint FIFO
Requested p_transfer_prams->num_bytes

transmitted?

Call the User specified fp_usb_in_transfer_complete

function

Create a CLD_USB_Transfer_Params variable (called

transfer_params in this flow chart)

transfer_params parameters to describe the requested

Isochronous IN transfer

 num_bytes = the size of the Isochronous IN transfer

 p_data_buffer = address of buffer that has num_bytes

of data to send to the Host

 fp_usb_in_transfer_complete = function called when

the requested number of bytes has been transmitted

 fp_transfer_aborted_callback = function to call if the

transfer is terminated.

 transfer_timeout_ms = number of milliseconds to wait

for the transfer to complete before detecting a timeout

(0 = timeout disabled).

Call cld_bf70x_audio_1_0_lib_transmit_audio_data

 passing a pointer to transfer_params

Initialize the first packet of the Isochronous IN transfer

using the User specified transfer_params.

Isochronous IN token

Isochronous IN Interrupt

Exit Isochronous IN Interrupt and wait for next Isochronous

IN Token

No

Yes

Wait for the USB Host to issue a USB IN Token on the

Isochronous IN endpoint

USB/External Event

CLD Library Firmware

User Firmware

USB Host Event

Exit Isochronous IN Interrupt

usb_in_transfer_complete

9

USB Audio Device Class v1.0 Background
The following is a basic overview of some USB Audio Device v1.0 concepts that are necessary to use the

CLD BF70x Audio 1.0 Library. However, it is recommended that developers have at least a basic

understanding of the USB Audio Device Class v1.0 protocol.

The USB Audio Device Class v1.0 protocol is a USB Standard Class released by the USB IF committee,

and it provides a standardized way for a device that is capable of audio input/output to communicate with

a USB Host. The USB Audio Device Class v1.0 USB descriptors provide a detailed description of the

Device's capabilities. This information includes the Device's supported audio sample rate(s), audio data

format, input and output terminals and how the various audio processing components are connected and

controlled.

The Device's audio processing capabilities are described using a series of USB Audio Class Terminal and

Unit Descriptors. The Terminal Descriptors define how audio data is input and output (speakers,

microphones, USB Isochronous endpoints, etc). The Unit Descriptors describe the Device's audio

processing capabilities and how they connect to the input/output Terminals. The diagram below shows

how the audio Terminal and Unit entities are connected in the CLD Audio 1.0 example project to

implement a basic device with a stereo speaker output, and stereo microphone input.

IT

Input Terminal

Type: USB Isochronous

 OUT Endpoint

Channels: Left & Right

IT

Input Terminal

Type: Microphone

Channels: Left & Right

Output Terminal

Type: Speaker

Output Terminal

Type: USB Isochronous

 IN Endpoint

Feature Unit

Supports: Volume & Mute

Feature Unit

Supports: Volume

OT

OT

More complex audio devices are created by connecting multiple Unit entities together to describe the

Device's capabilities. For more information about the available Unit and Terminal entities, and how they

are used please refer to the USB Audio Class Device v1.0 specification.

In order to successfully communicate with a USB Audio device the USB Host needs to know how the

audio data is formatted. This is done using a audio stream format descriptor, which is part of the

Streaming Audio Interface configuration. The USB Audio Device Class v1.0 specification supports

multiple audio data formats which are described in the USB Device Class Definition for Audio Data

Formats v1.0 specification. (www.usb.org/developers/docs/devclass_docs/frmts10.pdf)

http://www.usb.org/developers/docs/devclass_docs/frmts10.pdf

10

Isochronous Endpoint Bandwidth Allocation

As mentioned previously, one of the advantages of Isochronous endpoints is that they provide guaranteed

USB bandwidth. However, this can also be a disadvantage when the bandwidth isn't being used as it is

wasted.

To avoid this disadvantage the USB Audio Device Class v1.0 protocol requires that audio data streaming

interfaces include two settings. The default setting does not have any Isochronous endpoints so its

bandwidth requirement is zero. The alternate interface setting includes the required Isochronous endpoint.

This allows the USB Host to enable the Isochronous endpoints when it needs to send or receive audio

data, and disable them when the audio device is idle. This switch is done using the USB Chapter 9 Set

Interface standard request.

When the CLD BF70x Audio 1.0 Library receives a Set Interface request a appropriate User callback

function is called. Please refer to the fp_audio_streaming_rx_endpoint_enabled and

fp_audio_streaming_tx_endpoint_enabled function pointer descriptions in the

cld_bf70x_audio_1_0_lib_init section of this document for more information.

USB Audio Device Class v1.0 Control Endpoint Requests

The USB Audio Device Class v1.0 control endpoint requests are broken down into Set and Get requests.

These requests are used to control the various Terminal and Unit entities defined in the Configuration

Descriptor. The CLD BF70x Audio 1.0 Library support for these requests is explained in the following

sections.

Additionally, the User firmware code snippets included at the end of this document provide a basic

framework for implementing the USB audio Control Endpoint requests using the CLD BF70x Audio 1.0

Library.

11

USB Audio Device Class v1.0 Set Request

The USB Audio Device Class v1.0 Set Request is used to control the audio functions supported by the

Device. This includes modifying the attributes if the Unit and Terminal entities as well as controlling

features of the streaming audio endpoints.

CLD BF70x Audio Device Class v1.0 Set Request Flow Chart

Set Request Setup Packet

Call User specified fp_audio_set_req_cmd function.

 p_req_params->req = identifies the type of request

 p_req_params->recipient_is_interface = identifies if the request

was sent to an interface or streaming endpoint

 p_req_params->entity_id = the ID for the audio function being

modified (Terminal ID, Unit ID, etc).

 p_req_params->interface_or_endpoint_num = The interface or

endpoint number depending on the recipient specified by

recipient_is_interface.

 p_req_params->setup_packet_wValue = setup packet wValue

 p_transfer_params->num_bytes = setup packet wLength.

Set the p_transfer_params parameters to describe the expected Set

Reqest transfer

 p_data_buffer =address of buffer to store num_bytes of data.

 fp_usb_out_transfer_complete = function to call when the

requested number of bytes is received

 fp_transfer_aborted_callback = function to call if the transfer is

terminated.

 transfer_timeout_ms = not used for Control Transfers

Return CLD_USB_TRANSFER_ACCEPT

Unload the Control OUT packet from the Blackfin’s endpoint FIFO to

p_transfer_params->p_data_buffer

Requested p_transfer_prams->num_bytes received?

Call User specified

p_transfer_params->fp_usb_out_transfer_complete function

Exit Control Endpoint ISR, and Wait for next Control Out

packet Rx Interrupt

Endpoint 0 Interrupt

Return CLD_USB_DATA_GOOD if the received data is valid, or

CLD_USB_DATA_BAD_STALL to stall the Status Stage of the

Control OUT transfer.

Exit Control Endpoint ISR

Yes

No

USB/External Event

CLD Library Firmware

User Firmware

USB Host Event

Set Request Data Stage

Set Request Status Stage

12

USB Audio Device Class v1.0 Get Request

The Get Request is a Control IN request used by the Host to request data from the audio functions

supported by the Device. This includes requesting the attributes of the Unit and Terminal entities as well

as features of the audio stream endpoints.

CLD BF70x Audio Device Class v1.0 Get Request Flow Chart

Get Request Setup Packet

Call User specified fp_audio_set_req_cmd function.

 p_req_params->req = identifies the type of request

 p_req_params->recipient_is_interface = identifies if the request

was sent to an interface or streaming endpoint

 p_req_params->entity_id = the ID for the audio function being

accessed (Terminal ID, Unit ID, etc).

 p_req_params->interface_or_endpoint_num = The interface or

endpoint number depending on the recipient specified by

recipient_is_interface.

 p_req_params->setup_packet_wValue = setup packet wValue

 p_transfer_params->num_bytes = setup packet wLength.

Set the p_transfer_params parameters to transmit the requested Get

Request transfer

 p_data_buffer =address of buffer to store num_bytes of data.

 fp_usb_in_transfer_complete = function to call when the

requested number of bytes is transmitted

 fp_transfer_aborted_callback = function to call if the transfer is

terminated.

 transfer_timeout_ms = not used for Control Transfers

Return CLD_USB_TRANSFER_ACCEPT

Load the Control IN packet into the Blackfin’s endpoint 0 FIFO from

p_transfer_params->p_data_buffer

Requested number of bytes transmitted?

Call User specified

p_transfer_params->fp_usb_in_transfer_complete function

Exit Control Endpoint ISR, and Wait for next Control IN

packet Tx Interrupt

Endpoint 0 Interrupt

Perform any required Get Request transfer complete functions.

Exit Control Endpoint ISR

Yes

No

USB/External Event

CLD Library Firmware

User Firmware

USB Host Event

Get Request Data Stage

Get Request Status Stage

Set the number of Control IN bytes to the minimum of the Setup

Packet wLength and

p_transfer_params->num_bytes.

13

Dependencies
In order to function properly, the CLD BF70x Audio 1.0 Library requires the following Blackfin

resources:

 One Blackfin General Purpose Timer.

 24Mhz clock input connected to the Blackfin USB0_CLKIN pin.

 Optionally, the CLD BF70x Audio 1.0 Library can use one of the Blackfin UARTs to implement

a serial console interface.

 The User firmware is responsible for setting up the Blackfin clocks, as well as enabling the

Blackfin's System Event Controller (SEC) and configuring SEC Core Interface (SCI) interrupts to

be sent to the Blackfin core.

Memory Footprint
The CLD BF70x Audio 1.0 Library approximate memory footprint is as follows:

Code memory: 29464 bytes

Data memory: 5364 bytes

Total: 34828 bytes or 34.01k

Heap memory: 1152 bytes (only malloc'ed if optional cld_console is enabled)

Note: The CLD BF70x Audio 1.0 Library is currently optimized for speed (not space).

CLD BF70x Audio 1.0 Library Scope and Intended Use
The CLD BF70x Audio 1.0 Library implements the USB Audio Device Class v1.0 required functionality

to implement a USB Audio device, as well as providing time measurements and optional bi-directional

UART console functionality. The CLD BF70x Audio 1.0 Library is designed to be added to an existing

User project, and as such only includes the functionality needed to implement the above mentioned USB,

timer and UART console features. All other aspects of Blackfin processor configuration must be

implemented by the User code.

CLD Audio 1.0 Example v1.2 Description
The CLD_Audio_1_0_Ex_v1_2 project provided with the CLD BF70x Audio 1.0 Library implements a

basic USB audio device that supports a single stereo microphone input and stereo headphone output. This

example is designed to run on the ADSP-BF707 Ez-Board coupled with the Analog Devices Audio EI3

Extender (http://www.analog.com/en/evaluation/eval-bfext-audei3/eb.html), and requires the Audio EI3

Extender board support package to be installed.

For additional information about connecting and using the Audio EI3 Extender please refer to the "Using

the ADI Audio EI3 Extender" section of this Users Guide.

http://www.analog.com/en/evaluation/eval-bfext-audei3/eb.html

14

CLD BF70x Audio 1.0 Library API
The following CLD library API descriptions include callback functions that are called by the library

based on USB events. The following color code is used to identify if the callback function is called from

the USB interrupt service routine, or from mainline. The callback functions called from the USB

interrupt service routine are also italicized so they can be identified when printed in black and white.

Callback called from the mainline context

Callback called from the USB interrupt service routine

cld_bf70x_audio_1_0_lib_init

CLD_RV cld_bf70x_audio_1_0_lib_init (CLD_BF70x_Audio_1_0_Lib_Init_Params *

cld_audio_1_0_lib_params)

Initialize the CLD BF70x Audio 1.0 Library.

Arguments

cld_audio_1_0_lib_params Pointer to a

CLD_BF70x_Audio_1_0_Lib_Init_Params

structure that has been initialized with the User

Application specific data.

Return Value

This function returns the CLD_RV type which represents the status of the CLD BF70x Audio 1.0 Library

initialization process. The CLD_RV type has the following values:

CLD_SUCCESS The library was initialized successfully
CLD_FAIL There was a problem initializing the library
CLD_ONGOING The library initialization is being processed

Details

The cld_bf70x_audio_1_0_lib_init function is called as part of the device initialization and must be

repeatedly called until the function returns CLD_SUCCESS or CLD_FAIL. If CLD_FAIL is returned the

library will output an error message identifying the cause of the failure using the cld_console UART if

enabled by the User application. Once the library has been initialized successfully the main program loop

can start.

The CLD_BF70x_Audio_1_0_Lib_Init_Params structure is described below:

typedef struct

{

 CLD_Timer_Num timer_num;

 CLD_Uart_Num uart_num;

 unsigned long uart_baud;

 unsigned long sclk0;

 void (*fp_console_rx_byte) (unsigned char byte);

 unsigned short vendor_id;

 unsigned short product_id;

15

 unsigned char * p_unit_and_terminal_descriptors;

 unsigned short unit_and_terminal_descriptors_length;

 CLD_BF70x_Audio_1_0_Stream_Interface_Params *

 p_audio_streaming_rx_interface_params;

 CLD_BF70x_Audio_1_0_Stream_Interface_Params *

 p_audio_streaming_tx_interface_params;

 CLD_USB_Transfer_Request_Return_Type (*fp_audio_stream_data_received)

 (CLD_USB_Transfer_Params * p_transfer_data);

 CLD_USB_Transfer_Request_Return_Type (*fp_audio_set_req_cmd)

 (CLD_BF70x_Audio_1_0_Cmd_Req_Parameters * p_req_params,

 CLD_USB_Transfer_Params * p_transfer_data);

 CLD_USB_Transfer_Request_Return_Type (*fp_audio_get_req_cmd)

 (CLD_BF70x_Audio_1_0_Cmd_Req_Parameters * p_req_params,

 CLD_USB_Transfer_Params * p_transfer_data);

 void (*fp_audio_streaming_rx_endpoint_enabled) (CLD_Boolean enabled);

 void (*fp_audio_streaming_tx_endpoint_enabled) (CLD_Boolean enabled);

 unsigned char usb_bus_max_power

 unsigned short device_descriptor_bcdDevice

 const char * p_usb_string_manufacturer;

 const char * p_usb_string_product;

 const char * p_usb_string_serial_number;

 const char * p_usb_string_configuration;

 const char * p_usb_string_audio_control_interface;

 const char * p_usb_string_audio_streaming_out_interface;

 const char * p_usb_string_audio_streaming_in_interface;

 unsigned char user_string_descriptor_table_num_entries;

 CLD_BF70x_Audio_1_0_Lib_User_String_Descriptors *

 p_user_string_descriptor_table;

 unsigned short usb_string_language_id;

 void (*fp_cld_usb_event_callback) (CLD_USB_Event event);

} CLD_BF70x_Audio_1_0_Lib_Init_Params;

A description of the CLD_BF70x_Audio_1_0_Lib_Init_Params structure elements is included below:

Structure Element Description

timer_num Identifies which of the ADSP-BF707 timers should be used by the

CLD BF70x Audio 1.0 Library. The valid timer_num values are

listed below:

CLD_TIMER_0

CLD_TIMER_1

CLD_TIMER_2

CLD_TIMER_3

CLD_TIMER_4

16

CLD_TIMER_5

CLD_TIMER_6

CLD_TIMER_7

Any other timer_num values will result in the

cld_bf70x_audio_1_0_lib_init function returning CLD_FAIL.

uart_num Identifies which of the ADSP-BF70x UARTs should be used by the

CLD BF70x Audio 1.0 Library to implement the cld_console (refer

to the cld_console API description for additional information). The

valid uart_num values are listed below:

CLD_UART_0

CLD_UART_1

CLD_UART_DISABLE

If uart_num is set to CLD_UART_ DISABLE the CLD BF70x

Audio 1.0 Library will not use a UART, and the cld_console

functionality is disabled.

uart_baud Sets the desired UART baud rate used for the cld_console.

The remaining cld_console UART parameters are as follows:

Number of data bits: 8

Number of stop bits: 1

No Parity

No Hardware Flow Control

sclk0 Used to tell the CLD BF70x Audio 1.0 Library the frequency of the

ADSP_BF70x SCLK0 clock.

fp_console_rx_byte Pointer to the function that is called when a byte is received by the

cld_console UART. This function has a single parameter ('byte')

which is the value received by the UART.

Note: Set to NULL if not required by application

vendor_id The 16-bit USB vendor ID that is returned to the USB Host in the

USB Device Descriptor.

USB Vendor ID's are assigned by the USB-IF and can be purchased

through their website (www.usb.org).

product_id The 16-bit product ID that is returned to the USB Host in the USB

Device Descriptor.

p_unit_and_terminal_descriptors Pointer to the Unit and Terminal Descriptors which are part of the

Audio Control interface in the USB Configuration Descriptor.

unit_and_terminal_descriptors_len

gth

The length of the Unit and Terminal Descriptors addressed by

p_unit_and_terminal_descriptors.

p_audio_streaming_rx_interface_p

arams

Pointer to a CLD_BF70x_Audio_1_0_Stream_Interface_Params

structure that describes how the Isochronous IN endpoint and

related USB Audio Streaming interface should be configured. The a

CLD_BF70x_Audio_1_0_Stream_Interface_Params structure

contains the following elements:

Structure Element Description

endpoint_num Sets the USB endpoint number

of the Isochronous endpoint.

The endpoint number must be

17

within the following range:

1 ≤ endpoint_num ≤ 12. Any

other endpoint number will

result in the

cld_bf70x_audio_1_0_lib_init

function returning CLD_FAIL

max_packet_size_full_speed Sets the Isochronous

endpoint's max packet size

when operating at Full Speed.

The maximum max packet size

is 1023 bytes.

max_packet_size_high_speed Sets the Isochronous

endpoint's max packet size

when operating at High Speed.

The maximum max packet size

is 1024 bytes.

b_interval_full_speed Full-Speed polling interval in

the USB Endpoint Descriptor.

(See USB 2.0 section 9.6.6)

b_interval_high_speed High-Speed polling interval in

the USB Endpoint Descriptor.

(See USB 2.0 section 9.6.6)

synchronization_type Sets the Isochronous endpoint

synchronization type.

 1 = Asynchronous

 2 = Adaptive

 3 = Synchronous

b_terminal_link The Terminal ID of the

Terminal connected to this

endpoint.

b_delay Delay in frames introduced by

this endpoint's data path.

w_format_tag Identifies the audio data format

use by this interface.

p_format_type_descriptor Pointer to the format descriptor

defined in the USB Device

Class Definition for Audio

Data Formats v1.0

specification.

p_audio_stream_endpoint_data

_descriptor

Pointer to the Audio Streaming

endpoint data descriptor (See

USB Device Class Definition

for Audio Devices v1.0 section

4.6.1.2).

p_audio_streaming_tx_interface_p

arams

Pointer to a CLD_BF70x_Audio_1_0_Stream_Interface_Params

structure that describes how the Isochronous OUT endpoint and

related USB Audio Streaming interface should be configured.

Refer to the p_audio_streaming_rx_interface_params description

for information about the

CLD_BF70x_Audio_1_0_Stream_Interface_Params structure.

18

fp_audio_stream_data_received Pointer to the function that is called when the Isochronous OUT

endpoint receives data. This function takes a pointer to the

CLD_USB_Transfer_Params structure ('p_transfer_data') as a

parameter.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Isochronous OUT transfer:

Structure Element Description

num_bytes The number of bytes to transfer

to p_data_buffer before calling

the

fp_usb_out_transfer_complete

callback function.

When the

fp_audio_stream_data_received

function is called num_bytes is

set the number of bytes in the

current Isochronous OUT

packet. If the Isochronous OUT

total transfer size is known

num_bytes can be set to the

transfer size, and the CLD

BF70x Audio 1.0 Library will

complete the entire transfer

before calling

fp_audio_stream_data_received

again. If num_bytes isn't

modified the

fp_audio_stream_data_received

function will be called for each

Isochronous OUT packet.

p_data_buffer Pointer to the data buffer to

store the received Isochronous

OUT data. The size of the

buffer should be greater than or

equal to the value in

num_bytes.

fp_usb_out_transfer_compelete Function called when

num_bytes of data has been

transferred to the p_data_buffer

memory.

fp_transfer_aborted_callback Function called if there is a

problem transferring the

requested Isochronous OUT

data.

transfer_timeout_ms Isochronous OUT transfer

timeout in milliseconds. If the

Isochronous OUT transfer takes

19

longer then this timeout the

transfer is aborted and the

fp_transfer_aborted_callback is

called.

Setting the timeout to 0 disables

the timeout

The fp_audio_stream_data_received function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD BF70x

Audio 1.0 Library that the

Isochronous OUT data should

be accepted using the

p_transfer_data values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD BF70x

Audio 1.0 Library pause the

current transfer. This causes

the Isochronous OUT endpoint

to be nak'ed until the transfer

is resumed by calling

cld_bf70x_audio_1_0_lib_resu

me_paused_audio_data_

transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD BF70x

Audio 1.0 Library discard the

number f bytes specified in

p_transfer_params->

num_bytes. In this case the

library accepts the Isochronous

OUT data from the USB Host

but discards the data
CLD_USB_TRANSFER_STALL This notifies the CLD BF70x

Audio 1.0 Library that there is

an error and the Isochronous

OUT endpoint should be

stalled.

fp_audio_set_req_cmd Pointer to the function that is called when a USB Audio Device

Class v1.0 Set Request is received. This function has a pointer to

the CLD_USB_Transfer_Params structure ('p_transfer_data') , and

a pointer to the CLD_BF70x_Audio_1_0_Cmd_Req_Parameters

 (p_req_params) as its parameters.

The following CLD_BF70x_Audio_1_0_Cmd_Req_Parameters

structure elements are used to processed a Set Request:

Structure Element Description

req Identifies the type of request.

The valid types if requests are

listed below:

20

CLD_SET_CURRENT

CLD_SET_MIN

CLD_SET_MAX

CLD_SET_RESOLUTION

CLD_SET_MEMORY

recipient_is_interface Identifies if the request was

sent to an interface or Audio

streaming endpoint

entity_id The ID for the audio function

being modified (Terminal ID,

Unit ID, etc)

interface_or_endpoint_num The interface or endpoint

number for the request

depending on the recipient

specified by the

recipient_is_interface

parameter.

setup_packet_wValue wValue field from the USB

Setup Packet.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Set Request:

Structure Element Description

num_bytes The number of bytes from the

Setup Packet wLength field,

which is the number of bytes

that will be transferred to

p_data_buffer before calling

the

fp_usb_out_transfer_complete

callback function.

p_data_buffer Pointer to the data buffer to

store the Set Reqeust data.

The size of the buffer should

be greater than or equal to the

value in num_bytes.

fp_usb_out_transfer_complete Function called when

num_bytes of data has been

written to the p_data_buffer

memory.

fp_transfer_aborted_callback Function called if there is a

problem receiving the data, or

if the transfer is interrupted.

transfer_timeout_ms Not used for Control Requests

since the Host has the ability

to interrupt any Control

transfer.

The fp_audio_set_req_cmd function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

21

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD BF70x

Audio 1.0 Library that the Set

Request data should be

accepted using the

p_transfer_data values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD BF70x

Audio 1.0 Library pause the

Set Request transfer. This

causes the Control Endpoint to

be nak'ed until the transfer is

resumed by calling

cld_bf70x_audio_1_0_lib_

resume_paused_control_

transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD BF70x

Audio 1.0 Library discard the

number of bytes specified in

p_transfer_params->

num_bytes. In this case the

library accepts the Set Request

from the USB Host but

discards the data.
CLD_USB_TRANSFER_STALL This notifies the CLD BF70x

Audio 1.0 Library that there is

an error and the request should

be stalled.

fp_audio_get_req_cmd Pointer to the function that is called when a USB Audio Device

Class v1.0 Get Request is received. This function has a pointer to

the CLD_USB_Transfer_Params structure ('p_transfer_data') , and

a pointer to the CLD_BF70x_Audio_1_0_Cmd_Req_Parameters

 (p_req_params) as its parameters.

The following CLD_BF70x_Audio_1_0_Cmd_Req_Parameters

structure elements are used to processed a Set Request:

Structure Element Description

req Identifies the type of request.

The valid types if requests are

listed below:
CLD_GET_CURRENT

CLD_GET_MIN

CLD_GET_MAX

CLD_GET_RESOLUTION

CLD_GET_MEMORY

CLD_GET_STATUS

recipient_is_interface Identifies if the request was

sent to an interface or Audio

streaming endpoint

entity_id The ID for the audio function

being accessed (Terminal ID,

22

Unit ID, etc)

interface_or_endpoint_num The interface or endpoint

number for the request

depending on the recipient

specified by the

recipient_is_interface

parameter.

setup_packet_wValue wValue field from the USB

Setup Packet.

The following CLD_USB_Transfer_Params structure elements are

used to processed a Set Request:

Structure Element Description

num_bytes The number of bytes from the

Setup Packet wLength field,

which is the number of bytes

that the device can send from

p_data_buffer before calling

the fp_usb_out_transfer_

complete callback function.

p_data_buffer Pointer to the data buffer used

to source the Get Request

data. The size of the buffer

should be greater than or

equal to the value in

num_bytes.

fp_usb_in_transfer_complete Function called when

num_bytes of data has been

transmitted to the USB Host.

fp_transfer_aborted_callback Function called if there is a

problem transmitting the data,

or if the transfer is interrupted.

transfer_timeout_ms Not used for Control Requests

since the Host has the ability

to interrupt any Control

transfer.

The fp_audio_get_req_cmd function returns the

CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD BF70x

Audio 1.0 Library that the Get

Request data should be

transmitted using the

p_transfer_data values.
CLD_USB_TRANSFER_PAUSE Requests that the CLD BF70x

Audio 1.0 Library pause the

Get Request transfer. This

23

causes the Control Endpoint to

be nak'ed until the transfer is

resumed by calling

cld_bf70x_audio_1_0_lib_

resume_paused_control_

transfer.
CLD_USB_TRANSFER_DISCARD Requests that the CLD BF70x

Audio 1.0 Library to return a

zero length packet in response

to the Get Request.
CLD_USB_TRANSFER_STALL This notifies the CLD BF70x

Audio 1.0 Library that there is

an error and the request should

be stalled.

fp_audio_streaming_rx_endpoint_

enabled

Function called when the Isochronous OUT streaming interface is

enabled/disabled by the USB Host using the Set Interface

command.

fp_audio_streaming_tx_endpoint_

enabled

Function called when the Isochronous IN streaming interface is

enabled/disabled by the USB Host using the Set Interface

command.

usb_bus_max_power USB Configuration Descriptor bMaxPower value (0 = self

powered). Refer to the USB 2.0 protocol section 9.6.3.

device_descriptor_bcd_device USB Device Descriptor bcdDevice value.

Refer to the USB 2.0 protocol section 9.6.1.

p_usb_string_manufacturer Pointer to the null-terminated string. This string is used by the CLD

BF70x Audio 1.0 Library to generate the Manufacturer USB String

Descriptor. If the Manufacturer String Descriptor is not used set

p_usb_string_manufacturer to CLD_NULL.

p_usb_string_product Pointer to the null-terminated string. This string is used by the CLD

BF70x Audio 1.0 Library to generate the Product USB String

Descriptor. If the Product String Descriptor is not used set

p_usb_string_product to CLD_NULL.

p_usb_string_serial_number Pointer to the null-terminated string. This string is used by the CLD

BF70x Audio 1.0 Library to generate the Serial Number USB

String Descriptor. If the Serial Number String Descriptor is not

used set p_usb_string_serial_number to CLD_NULL.

p_usb_string_configuration Pointer to the null-terminated string. This string is used by the CLD

BF70x Audio 1.0 Library to generate the Configuration USB String

Descriptor. If the Configuration String Descriptor is not used set

p_usb_string_configuration to CLD_NULL.

p_usb_string_audio_control_interf

ace

Pointer to the null-terminated string. This string is used by the CLD

BF70x Audio 1.0 Library to generate the Audio Control Interface

USB String Descriptor. If this interface String Descriptor is not

used set it to CLD_NULL.

p_usb_string_audio_streaming_

out_interface

Pointer to the null-terminated string. This string is used by the CLD

BF70x Audio 1.0 Library to generate the Audio OUT Streaming

Interface USB String Descriptor. If this interface String Descriptor

is not used set it to CLD_NULL.

p_usb_string_audio_streaming_in

_interface

Pointer to the null-terminated string. This string is used by the CLD

BF70x Audio 1.0 Library to generate the Audio IN Streaming

24

Interface USB String Descriptor. If this interface String Descriptor

is not used set it to CLD_NULL.

user_string_descriptor_table_num

_entries

The number of entries in the array of

CLD_BF70x_Audio_1_0_Lib_User_String_Descriptors structures

addressed by p_user_string_descriptor_table. Set to 0 if

p_user_string_descriptor_table is set to CLD_NULL.

p_user_string_descriptor_table Pointer to an array of CLD_BF70x_Audio_1_0_Lib_User_

String_Descriptors structures used to define any custom User

defined USB string descriptors. This table is used to define any

USB String descriptors for any string descriptor indexes that are

used in the Terminal or Unit Descriptors.

Set to CLD_NULL is not used.

The CLD_BF70x_Audio_1_0_Lib_User_String_Descriptors

structure elements are explained below:

Structure Element Description

string_index

The USB String Descriptor

index for the string. The

string_index value is set to the

index specified in the

Terminal or Unit Descriptor

associated with this string.

p_string Pointer to a null terminated

string.

usb_string_language_id 16-bit USB String Descriptor Language ID Code as defined in the

USB Language Identifiers (LANGIDs) document

(www.usb.org/developers/docs/USB_LANGIDs.pdf).

0x0409 = English (United States)

fp_cld_usb_event_callback Function that is called when one of the following USB events

occurs. This function has a single CLD_USB_Event parameter.

Note: This callback can be called from the USB interrupt or

mainline context depending on which USB event was detected. The

CLD_USB_Event values in the table below are highlighted to show

the context the callback is called for each event.

The CLD_USB_Event has the following values:

Return Value Description
CLD_USB_CABLE_CONNECTED

USB Cable Connected.

CLD_USB_CABLE_DISCONNECTED USB Cable

Disconnected
CLD_USB_ENUMERATED_CONFIGURED USB device enumerated

(USB Configuration set

to a non-zero value)
CLD_USB_UN_CONFIGURED USB Configuration set

to 0
CLD_USB_BUS_RESET USB Bus reset received

25

Note: Set to CLD_NULL if not required by application

cld_bf70x_audio_1_0_lib_main

void cld_bf70x_audio_1_0_lib_main (void)

CLD BF70x Audio 1.0 Library mainline function

Arguments

None

Return Value

None.

Details

The cld_bf70x_audio_1_0_lib_main function is the CLD BF70x Audio 1.0 Library mainline function that

must be called in every iteration of the main program loop in order for the library to function properly.

cld_bf70x_audio_1_0_lib_transmit_audio_data

CLD_USB_Data_Transmit_Return_Type cld_bf70x_audio_1_0_lib_transmit_audio_data

 (CLD_USB_Transfer_Params * p_transfer_data)

CLD BF70x Audio 1.0 Library function used to send data over the Isochronous IN endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_Transfer_Params structure

used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Isochronous

IN transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following

values:
CLD_USB_TRANSMIT_SUCCESSFUL The library has started the requested Isochronous

IN transfer.
CLD_USB_TRANSMIT_FAILED The library failed to start the requested Isochronous

IN transfer. This will happen if the Isochronous IN

endpoint is busy, or if the p_transfer_data->

data_buffer is set to CLD_NULL

Details

The cld_bf70x_audio_1_0_lib_transmit_audio_data function transmits the data specified by the

p_transfer_data parameter to the USB Host using the Device's Isochronous IN endpoint.

The CLD_USB_Transfer_Params structure is described below.

typedef struct

{

26

 unsigned long num_bytes;

 unsigned char * p_data_buffer;

 union

 {

 CLD_USB_Data_Received_Return_Type (*fp_usb_out_transfer_complete)(void);

 void (*fp_usb_in_transfer_complete) (void);

 }callback;

 void (*fp_transfer_aborted_callback) (void);

 CLD_Time transfer_timeout_ms;

} CLD_USB_Transfer_Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the

specified number of bytes has been transmitted the

fp_usb_in_transfer_complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must

include the number of bytes specified by num_bytes.

fp_usb_out_transfer_complete Not Used for Isochronous IN transfers

fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the

USB Host. This function pointer can be set to CLD_NULL if the

User application doesn't want to be notified when the data has been

transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the

USB Host. This function can be set to CLD_NULL if the User

application doesn't want to be notified if a problem occurs.

transfer_timeout_ms Isochronous OUT transfer timeout in milliseconds. If the

Isochronous OUT transfer takes longer then this timeout the

transfer is aborted and the fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

27

cld_bf70x_audio_1_0_lib_resume_paused_audio_data_transfer

void cld_bf70x_audio_1_0_lib_resume_paused_audio_data_transfer (void)

CLD BF70x Audio 1.0 Library function used to resume a paused Isochronous OUT transfer.

Arguments

None

Return Value

None.

Details

The cld_bf70x_audio_1_0_lib_resume_paused_audio_data_transfer function is used to resume an

Isochronous OUT transfer that was paused by the fp_audio_stream_data_received function

returning CLD_USB_TRANSFER_PAUSE. When called the

cld_bf70x_audio_1_0_lib_resume_paused_audio_data_transfer function will call the User application's

fp_audio_stream_data_received function passing the CLD_USB_Transfer_Params of the original

paused transfer. The fp_audio_stream_data_received function can then choose to accept, discard,

or stall the Isochronous OUT request.

cld_bf70x_audio_1_0_lib_resume_paused_control_transfer

void cld_bf70x_audio_1_0_lib_resume_paused_control_transfer (void)

CLD BF70x Audio 1.0 Library function used to resume a paused Control endpoint transfer.

Arguments

None

Return Value

None.

Details

The cld_bf70x_audio_1_0_lib_resume_paused_control_transfer function is used to resume a Control

transfer that was paused by the fp_audio_set_req_cmd or fp_audio_get_req_cmd

function returning CLD_USB_TRANSFER_PAUSE. When called the

cld_bf70x_audio_1_0_lib_resume_paused_control_transfer function will call the User application's

fp_audio_set_req_cmd or fp_audio_get_req_cmd function passing the

CLD_USB_Transfer_Params of the original paused transfer. The User function can then chose to accept,

discard, or stall the Control endpoint request.

28

cld_ lib_usb_connect

void cld_lib_usb_connect (void)

CLD BF70x Audio 1.0 Library function used to connect to the USB Host.

Arguments

None

Return Value

None.

Details

The cld_lib_usb_connect function is called after the CLD BF70x Audio 1.0 Library has been initialized to

connect the USB device to the Host.

cld_ lib_usb_disconnect

void cld_lib_usb_disconnect (void)

CLD BF70x Audio 1.0 Library function used to disconnect from the USB Host.

Arguments

None

Return Value

None.

Details

The cld_lib_usb_disconnect function is called after the CLD BF70x Audio 1.0 Library has been

initialized to disconnect the USB device to the Host.

29

cld_time_get

CLD_Time cld_time_get(void)

CLD BF70x Audio 1.0 Library function used to get the current CLD time.

Arguments

None

Return Value

The current CLD library time.

Details

The cld_time_get function is used in conjunction with the cld_time_passed_ms function to measure how

much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

cld_time_passed_ms

CLD_Time cld_time_passed_ms(CLD_Time time)

CLD BF70x Audio 1.0 Library function used to measure the amount of time that has passed.

Arguments

time A CLD_Time value returned by a cld_time_get

function call.

Return Value

The number of milliseconds that have passed since the cld_time_get function call that returned the

CLD_Time value passed to the cld_time_passed_ms function.

Details

The cld_time_passed_ms function is used in conjunction with the cld_time_get function to measure how

much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

30

cld_console

CLD_RV cld_console(CLD_CONSOLE_COLOR foreground_color, CLD_CONSOLE_COLOR

 background_color, const char *fmt, ...)

CLD Library function that outputs a User defined message using the UART specified in the

CLD_BF70x_Audio_1_0_Lib_Init_Params structure.

Arguments

foreground_color The CLD_CONSOLE_COLOR used for the

console text.

CLD_CONSOLE_BLACK

CLD_CONSOLE_RED

CLD_CONSOLE_GREEN

CLD_CONSOLE_YELLOW

CLD_CONSOLE_BLUE

CLD_CONSOLE_PURPLE

CLD_CONSOLE_CYAN

CLD_CONSOLE_WHITE

background_color The CLD_CONSOLE_COLOR used for the

console background.

CLD_CONSOLE_BLACK

CLD_CONSOLE_RED

CLD_CONSOLE_GREEN

CLD_CONSOLE_YELLOW

CLD_CONSOLE_BLUE

CLD_CONSOLE_PURPLE

CLD_CONSOLE_CYAN

CLD_CONSOLE_WHITE

The foreground and background colors allow the

User to generate various color combinations like

the ones shown below:

fmt The User defined ASCII message that uses the

same format specifies as the printf function.
... Optional list of additional arguments

31

Return Value

This function returns whether or not the specified message has been added to the cld_console transmit

buffer.
CLD_SUCCESS The message was added successfully.
CLD_FAIL The message was not added, so the message will

not be transmitted. This will occur if the CLD

Console is disabled, or if the message will not fit

into the transmit buffer.

Details

cld_console is similar in format to printf, and also natively supports setting a foreground and background

color.

The following will output 'The quick brown fox' on a black background with green text:

 cld_console(CLD_CONSOLE_GREEN, CLD_CONSOLE_BLACK, "The quick brown %s\n\r", "fox");

32

Using the ADSP-BF707 Ez-Board

Connections:

Blackfin USB 0 used

by the CLD Library

USB-to-Serial port connected

to Blackfin UART 0

UART 0 can be used for the

CLD Console port

5V Power

Connector

Note about using UART0 and the FTDI USB to Serial Converter

On the ADSP-BF707 Ez-Board the Blackfin's UART0 serial port is connected to a FTDI FT232RQ USB-

to-Serial converter. By default the UART 0 signals are connected to the FTDI chip. However, the demo

program shipped on the Ez-Board disables the UART0 to FTDI connection. If the FTDI converter is used

for the CLD BF70x Audio 1.0 Library console change the boot selection switch (located next to the

power connector) so the demo program doesn't boot. Once this is done the FTDI USB-to-Serial converter

can be used with the CLD BF70x Audio 1.0 Library console connected to UART0.

33

Adding the CLD BF70x Audio 1.0 Library to an Existing CrossCore

Embedded Studio Project

In order to include the CLD BF70x Audio 1.0 Library in a CrossCore Embedded Studio (CCES) project

you must configure the project linker settings so it can locate the library. The following steps outline how

this is done.

1. Copy the cld_bf70x_audio_1_0_lib.h and cld_bf70x_audio_1_0_lib.dlb files to the project's src

directory.

2. Open the project in CrossCore Embedded Studio.

3. Right click the project in the 'C/C++ Projects' window and select Properties.

If you cannot find the 'C/C++ Projects" window make sure C/C++ Perspective is active. If the

C/C++ Perspective is active and you still cannot locate the 'C/C++ Projects' window select

Window → Show View → C/C++ Projects.

4. You should now see a project properties window similar to the one shown below.

Navigate to the C/C++ Build → Settings page and select the CrossCore Blackfin Linker General

page. The CLD BF70x Audio 1.0 Library needs to be included in the projects 'Additional

libraries and object files' as shown in the diagram below (circled in blue). This lets the linker

know where the cld_bf70x_audio_1_0_lib.dlb file is located.

34

5. The 'Additional libraries and object files' setting needs to be set for all configurations (Debug,

Release, etc). This can be done individually for each configuration, or all at once by selecting the

[All Configurations] option as shown in the previous figure (circled in orange).

35

Using the ADI Audio EI3 Extender

Connections:

The Audio EI3 Extender can be connected to ADSP-BF707 Ez-Board using the P1A or P1B connector on

the bottom of the Ez-Board (see picture below). By default the CLD Audio 1.0 Example is configured to

use the P1A port, but can be modified to use P1B my changing the SPORT_TX_DEVICE and

SPORT_RX_DEVICE #define values in user_adau1761.h to 1.

P
1
A

S
P

O
R

T
_
T

X
_
D

E
V

IC
E

 =
 0

S
P

O
R

T
_
R

X
_
D

E
V

IC
E

 =
 0

P1B

SPORT_TX_DEVICE = 1

SPORT_RX_DEVICE = 1

For its audio output the CLD Audio 1.0 example uses the Audio EI3 Extender's headphone jack (circled

in red in the picture below). The example's audio input comes from the Audio EI3 Extender's two digital

microphones (circled in orange in the picture below). All of the Audio EI3 Extender DIP switches

(circled in yellow) should be turned OFF.

36

Audio EI3 Extender Board Support Package (Required by CLD Audio Example)

The CLD Audio 1.0 Example interfaces to the Audio EI3 Extender's ADAU1761 Codec using the Analog

Devices driver provided with the Audio EI3 Extender board support package. This board support

package can be downloaded from the Audio EI3 Extender's web page, under the "Product Downloads"

section (http://www.analog.com/en/evaluation/eval-bfext-audei3/eb.html).

http://www.analog.com/en/evaluation/eval-bfext-audei3/eb.html

37

User Firmware Code Snippets
The following code snippets are not complete, and are meant to be a starting point for the User firmware.

For a functional User firmware example that uses the CLD BF70x Audio 1.0 Library please refer to the

CLD_Audio_1_0_Ex_v1_2 project included with the CLD BF70x Audio 1.0 Library. The

CLD_Audio_1_0_Ex_v1_2 project implements a basic USB Audio device used by the Analog Devices

Audio EI3 Extender board.

main.c

void main(void)

{

 Main_States main_state = MAIN_STATE_SYSTEM_INIT;

 while (1)

 {

 switch (main_state)

 {

 case MAIN_STATE_SYSTEM_INIT:

 /* Enable and Configure the SEC. */

 /* sec_gctl - unlock the global lock */

 pADI_SEC0->GCTL &= ~BITM_SEC_GCTL_LOCK;

 /* sec_gctl - enable the SEC in */

 pADI_SEC0->GCTL |= BITM_SEC_GCTL_EN;

 /* sec_cctl[n] - unlock */

 pADI_SEC0->CB.CCTL &= ~BITM_SEC_CCTL_LOCK;

 /* sec_cctl[n] - reset sci to default */

 pADI_SEC0->CB.CCTL |= BITM_SEC_CCTL_RESET;

 /* sec_cctl[n] - enable interrupt to be sent to core */

 pADI_SEC0->CB.CCTL = BITM_SEC_CCTL_EN;

 pADI_PORTA->DIR_SET = (3 << 0);

 pADI_PORTB->DIR_SET = (1 << 1);

 main_state = MAIN_STATE_USER_INIT;

 break;

 case MAIN_STATE_USER_INIT:

 rv = user_audio_init();

 if (rv == USER_AUDIO_INIT_SUCCESS)

 {

 main_state = MAIN_STATE_RUN;

 }

 else if (rv == USER_AUDIO_INIT_FAILED)

 {

 main_state = MAIN_STATE_ERROR;

 }

 break;

 case MAIN_STATE_RUN:

 user_audio_main();

 break;

 case MAIN_STATE_ERROR:

 break;

 }

 }

}

38

user_audio.c

#pragma pack (1)

/* USB Audio v1.0 Unit and Terminal descriptors that describe a simple

 audio device. */

static const unsigned char user_audio_unit_and_terminal_descriptor[] =

{

 /* Input Terminal Descriptor - USB Endpoint */

 0x0C, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x02, /* bDescriptorSubType = Input Terminal */

 0x01, /* bTerminalID */

 0x01, 0x01, /* wTerminalType = USB Streaming */

 0x00, /* bAssocTerminal */

 0x02, /* bNRChannels */

 0x03, 0x00, /* wChannelConfig (Left & Right Present) */

 0x00, /* iChannelConfig */

 0x00, /* iTerminal */

 /* Input Terminal Descriptor - Microphone */

 0x0C, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x02, /* bDescriptorSubType = Input Terminal */

 0x02, /* bTerminalID */

 0x01, 0x02, /* wTerminalType = Microphone */

 0x00, /* bAssocTerminal */

 0x02, /* bNRChannels */

 0x03, 0x00, /* wChannelConfig (Left & Right Present) */

 0x00, /* iChannelConfig */

 0x00, /* iTerminal */

 /* Output Terminal Descriptor - Speaker */

 0x09, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x03, /* bDescriptorSubType = Output Terminal */

 0x06, /* bTerminalID */

 0x01, 0x03, /* wTerminalType - Speaker */

 0x00, /* bAssocTerminal */

 0x09, /* bSourceID */

 0x00, /* iTerminal */

 /* Output Terminal Descriptor - USB Endpoint */

 0x09, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x03, /* bDescriptorSubType = Output Terminal */

 0x07, /* bTerminalID */

 0x01, 0x01, /* wTerminalType - USB Streaming */

 0x00, /* bAssocTerminal */

 0x0a, /* bSourceID */

 0x00, /* iTerminal */

 /* Feature Unit Descriptor */

 0x0A, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x06, /* bDescriptorSubType = Feature Unit */

 0x09, /* bUnitID */

 0x01, /* bSourceID */

 0x01, /* bControlSize */

 0x01, /* mbaControls(0) - Mute Supported */

 0x02, /* mbaControls(1) - Volume Supported */

 0x02, /* mbaControls(2) - Volume Supported */

 0x00, /* iFeature */

 /* Feature Unit Descriptor */

 0x0A, /* bLength */

 0x24, /* bDescriptorType = Class Specific Interface */

 0x06, /* bDescriptorSubType = Feature Unit */

 0x0A, /* bUnitID */

39

 0x02, /* bSourceID */

 0x01, /* bControlSize */

 0x02, /* mbaControls(0) - Volume */

 0x00, /* mbaControls(1) */

 0x00, /* mbaControls(2) */

 0x00, /* iFeature */

};

/* Isochronous IN endpoint PCM format descriptor */

static const unsigned char user_audio_in_stream_format_descriptor[] =

{

 0x0b, /* bLength */

 0x24, /* bDescriptorType - Class Specific Interface */

 0x02, /* bDescriptorSubType - Format Type */

 0x01, /* bFormatType - Format Type 1 */

 0x02, /* bNrChannels */

 0x04, /* bSubFrameSize */

 0x20, /* bBitResolution */

 0x01, /* bSamFreqType */

 0x80, 0xBB, 0x00, /* tSamFreq(1) = 48.0Khz */

};

/* Isochronous OUT endpoint PCM format descriptor */

static const unsigned char user_audio_out_stream_format_descriptor[] =

{

 0x0b, /* bLength */

 0x24, /* bDescriptorType - Class Specific Interface */

 0x02, /* bDescriptorSubType - Format Type */

 0x01, /* bFormatType - Format Type 1 */

 0x02, /* bNrChannels */

 0x04, /* bSubFrameSize */

 0x20, /* bBitResolution */

 0x01, /* bSamFreqType */

 0x80, 0xBB, 0x00, /* tSamFreq(1) = 48.0Khz */

};

#pragma pack ()

/* IN Audio Stream Interface Endpoint Data Descriptor */

static const CLD_BF70x_Audio_1_0_Lib_Audio_Stream_Data_Endpoint_Descriptor

 user_audio_in_stream_endpoint_desc =

{

 .b_length = sizeof(CLD_BF70x_Audio_1_0_Lib_Audio_Stream_Data_Endpoint_Descriptor),

 .b_descriptor_type = 0x25, /* Class Specific Endpoint */

 .b_descriptor_subtype = 0x01, /* Endpoint - General */

 .bm_attributes = 0x01, /* sampling freq supported */

 .b_lock_delay_units = 0x00, /* Undefined */

 .w_lock_delay = 0x00,

};

static const CLD_BF70x_Audio_1_0_Lib_Audio_Stream_Data_Endpoint_Descriptor

 user_audio_out_stream_endpoint_desc =

{

 .b_length = sizeof(CLD_BF70x_Audio_1_0_Lib_Audio_Stream_Data_Endpoint_Descriptor),

 .b_descriptor_type = 0x25, /* Class Specific Endpoint */

 .b_descriptor_subtype = 0x01, /* Endpoint - General */

 .bm_attributes = 0x01, /* sampling freq supported */

 .b_lock_delay_units = 0x01, /* Milliseconds */

 .w_lock_delay = 0x01, /* 1 Millisecond */

};

/* Audio Stream IN Interface parameters */

static CLD_BF70x_Audio_1_0_Stream_Interface_Params user_audio_in_endpoint_params =

{

40

 .endpoint_number = 1, /* Isochronous endpoint number */

 .max_packet_size_full_speed = 400, /* Isochronous endpoint full-speed

 max packet size */

 .max_packet_size_high_speed = 400, /* Isochronous endpoint high-speed

 max packet size */

 .b_interval_full_speed = 1, /* Isochronous endpoint full-speed

 bInterval */

 .b_interval_high_speed = 4, /* Isochronous endpoint high-speed

 bInterval - 1 millisecond */

 .synchronization_type = 0x1, /* Isochronous endpoint

 synchronization type =

 Asynchronous */

 .b_terminal_link = 7, /* Terminal ID of the associated

 Output Terminal */

 .b_delay = 1, /* Delay = 1 Frame */

 .w_format_tag = 1, /* PCM */

 /* Pointer to the PCM Format

 Descriptor */

 .p_format_type_descriptor = (unsigned char*)

 user_audio_in_stream_format_descriptor,

 .p_audio_stream_endpoint_data_descriptor =

 (CLD_BF70x_Audio_1_0_Lib_Audio_Stream_Data_Endpoint_Descriptor*)

 &user_audio_in_stream_endpoint_desc,

};

/* Audio Stream OUT Interface parameters */

static CLD_BF70x_Audio_1_0_Stream_Interface_Params user_audio_out_endpoint_params =

{

 .endpoint_number = 1, /* Isochronous endpoint number */

 .max_packet_size_full_speed = 400, /* Isochronous endpoint full-speed

 max packet size */

 .max_packet_size_high_speed = 400, /* Isochronous endpoint high-speed

 max packet size */

 .b_interval_full_speed = 1, /* Isochronous endpoint full-speed

 bInterval */

 .b_interval_high_speed = 4, /* Isochronous endpoint high-speed

 bInterval - 1 millisecond */

 .synchronization_type = 0x2, /* Isochronous endpoint

 synchronization type = Adaptive

 */

 .b_terminal_link = 1, /* Terminal ID of the associated

 Output Terminal */

 .b_delay = 1, /* Delay = 1 Frame */

 .w_format_tag = 1, /* PCM */

 /* Pointer to the PCM Format

 Descriptor */

 .p_format_type_descriptor = (unsigned char*)

 user_audio_out_stream_format_descriptor,

 .p_audio_stream_endpoint_data_descriptor =

 (CLD_BF70x_Audio_1_0_Lib_Audio_Stream_Data_Endpoint_Descriptor*)

 &user_audio_out_stream_endpoint_desc,

};

/* CLD BF70x Audio 1.0 library initialization data. */

static CLD_BF70x_Audio_1_0_Lib_Init_Params user_audio_init_params =

{

 .timer_num = CLD_TIMER_0,

 .uart_num = CLD_UART_0,

 .uart_baud = 115200,

 .sclk0 = 100000000u,

 .fp_console_rx_byte = user_audio_console_rx_byte,

 .vendor_id = 0x064b,

41

 .product_id = 0x0005,

 .p_unit_and_terminal_descriptors = (unsigned char*)

 user_audio_unit_and_terminal_descriptor,

 .unit_and_terminal_descriptors_length =

 sizeof(user_audio_unit_and_terminal_descriptor),

 .p_audio_streaming_rx_interface_params = &user_audio_out_endpoint_params,

 .p_audio_streaming_tx_interface_params = &user_audio_in_endpoint_params,

 .fp_audio_stream_data_received = user_audio_stream_data_received,

 .fp_audio_set_req_cmd = user_audio_set_req_cmd,

 .fp_audio_get_req_cmd = user_audio_get_req_cmd,

 .fp_audio_streaming_rx_endpoint_enabled =user_audio_streaming_rx_endpoint_enabled,

 .fp_audio_streaming_tx_endpoint_enabled =user_audio_streaming_tx_endpoint_enabled,

 .usb_bus_max_power = 0,

 .device_descriptor_bcdDevice = 0x0100,

 /* USB string descriptors - Set to CLD_NULL if not required */

 .p_usb_string_manufacturer = "Analog Devices Inc",

 .p_usb_string_product = "BF707 Audio v1.0 Device",

 .p_usb_string_serial_number = CLD_NULL,

 .p_usb_string_configuration = CLD_NULL,

 .p_usb_string_audio_control_interface = CLD_NULL,

 .p_usb_string_audio_streaming_out_interface = CLD_NULL,

 .p_usb_string_audio_streaming_in_interface = CLD_NULL,

 .user_string_descriptor_table_num_entries = 0,

 .p_user_string_descriptor_table = CLD_NULL,

 .usb_string_language_id = 0x0409, /* English (US) language ID */

 .fp_cld_usb_event_callback = user_audio_usb_event,

};

42

User_Audio_Init_Return_Code user_audio_init (void)

{

 static unsigned char user_init_state = 0;

 CLD_RV cld_rv = CLD_ONGOING;

 User_Audio_Init_Return_Code init_return_code = USER_AUDIO_INIT_ONGOING;

 switch (user_init_state)

 {

 case 0:

 /* TODO: add any custom User firmware initialization */

 user_init_state++;

 break;

 case 1:

 /* Initialize the CLD BF70x Audio 1.0 Library */

 cld_rv = cld_bf70x_audio_1_0_lib_init(&user_audio_init_params);

 if (cld_rv == CLD_SUCCESS)

 {

 /* Connect to the USB Host */

 cld_lib_usb_connect();

 init_return_code = USER_AUDIO_INIT_SUCCESS;

 }

 else if (cld_rv == CLD_FAIL)

 {

 init_return_code = USER_AUDIO_INIT_FAILED;

 }

 else

 {

 init_return_code = USER_AUDIO_INIT_ONGOING;

 }

 }

 return init_return_code;

}

void user_audi_main (void)

{

 cld_bf70x_audio_1_0_lib_main();

}

/* Function called when an Isochronous OUT packet is received */

static CLD_USB_Transfer_Request_Return_Type user_audio_stream_data_received

 (CLD_USB_Transfer_Params * p_transfer_data)

{

 p_transfer_data->num_bytes = /* TODO: Set number of Isochronous OUT bytes to transfer

 */

 p_transfer_data->p_data_buffer = /* TODO: address to store Isochronous OUT data */

 /* User Audio transfer complete callback function. */

 p_transfer_data->fp_callback.usb_out_transfer_complete =

 user_audio_stream_data_rx_done;

 p_transfer_params->fp_transfer_aborted_callback = /* TODO: Set to User callback

 function or CLD_NULL */;

 p_transfer_params->transfer_timeout_ms = /* TODO: Set to desired timeout */;

 /* TODO: Return how the Isochronous OUT transfer should be handled (Accept, Pause,

 Discard, or Stall */

}

43

/* The function below is an example if the Isochronous OUT transfer done callback

 specified in the CLD_USB_Transfer_Params structure. */

static CLD_USB_Data_Received_Return_Type user_audio_stream_data_rx_done (void)

{

 /* TODO: Process the received Isochronous OUT transfer and return if the received

 data is good(CLD_USB_DATA_GOOD) or if there is an error

 (CLD_USB_DATA_BAD_STALL)*/

}

static void user_audio_console_rx_byte (unsigned char byte)

{

 /* TODO: Add any User firmware to process data received by the CLD Console UART.*/

}

static void user_audio_usb_event (CLD_USB_Event event)

{

 switch (event)

 {

 case CLD_USB_CABLE_CONNECTED:

 /* TODO: Add any User firmware processed when a USB cable is connected. */

 break;

 case CLD_USB_CABLE_DISCONNECTED:

 /* TODO: Add any User firmware processed when a USB cable is

 disconnected.*/

 break;

 case CLD_USB_ENUMERATED_CONFIGURED:

 /* TODO: Add any User firmware processed when a Device has been

 enumerated.*/

 break;

 case CLD_USB_UN_CONFIGURED:

 /* TODO: Add any User firmware processed when a Device USB Configuration

 is set to 0.*/

 break;

 case CLD_USB_BUS_RESET:

 /* TODO: Add any User firmware processed when a USB Bus Reset occurs. */

 break;

 }

}

/* The following function will transmit the specified memory using

 the Isochronous IN endpoint. */

static user_audio_transmit_isochronous_in_data (void)

{

 static CLD_USB_Transfer_Params transfer_params;

 transfer_params.num_bytes = /* TODO: Set number of IN bytes */

 transfer_params.p_data_buffer = /* TODO: address data */

 transfer_params.callback.fp_usb_in_transfer_complete = /* TODO: Set to User

 callback function or

 CLD_NULL */;

 transfer_params.callback.fp_transfer_aborted_callback = /* TODO: Set to User

 callback function or

 CLD_NULL */;

 transfer_params.transfer_timeout_ms = /* TODO: Set to desired timeout */;

 if (cld_bf70x_audio_1_0_lib_transmit_audio_data (&transfer_params) ==

 CLD_USB_TRANSMIT_SUCCESSFUL)

 {

 /* Isochronous IN transfer initiated successfully */

 }

 else /* Isochronous IN transfer was unsuccessful */

 {

44

 }

}

/* Function called when a Set Request is received */

static CLD_USB_Transfer_Request_Return_Type user_audio_set_req_cmd

 (CLD_BF70x_Audio_1_0_Cmd_Req_Parameters * p_req_params,

 CLD_USB_Transfer_Params * p_transfer_data)

{

 p_transfer_data->p_data_buffer = /* TODO: address to store data */

 p_transfer_data->callback.fp_usb_out_transfer_complete =

 user_audio_set_req_cmd_transfer_complete;

 p_transfer_data->fp_transfer_aborted_callback = /* TODO: Set to User callback

 function or CLD_NULL */

 /* TODO: Return how the Control transfer should be handled (Accept, Pause,

 Discard, or Stall */

}

/* Function called when the Set Request data is received */

static CLD_USB_Data_Received_Return_Type user_audio_set_req_cmd_transfer_complete

 (void)

{

 /* TODO: Return if the received data is good (CLD_USB_DATA_GOOD) or bad

 (CLD_USB_DATA_BAD_STALL) */

}

/* Function called when a Get Request is received */

static CLD_USB_Transfer_Request_Return_Type user_audio_get_req_cmd

 (CLD_BF70x_Audio_1_0_Cmd_Req_Parameters * p_req_params,

 CLD_USB_Transfer_Params * p_transfer_data)

{

 p_transfer_data->p_data_buffer = /* TODO: address to source data */

 p_transfer_data->callback.fp_usb_in_transfer_complete =

 user_audio_get_req_cmd_transfer_complete;

 p_transfer_data->fp_transfer_aborted_callback = /* TODO: Set to User callback

 function or CLD_NULL */

 /* TODO: Return how the Control transfer should be handled (Accept, Pause,

 Discard, or Stall */

}

/* Function called when the Get Request data has been transmitted */

static void user_audio_get_req_cmd_transfer_complete (void)

{

 /* TODO: The Get Request data has been sent to the Host, add any

 User functionality. */

}

static void user_audio_streaming_rx_endpoint_enabled (CLD_Boolean enabled)

{

 if (enabled == CLD_TRUE)

 {

 /* TODO: Add Isochronous OUT endpoint enabled User functionality. */

 }

 else

 {

 /* TODO: Add Isochronous OUT endpoint disabled User functionality. */

 }

}

45

static void user_audio_streaming_tx_endpoint_enabled (CLD_Boolean enabled)

{

 if (enabled == CLD_TRUE)

 {

 /* TODO: Add Isochronous IN endpoint enabled User functionality. */

 }

 else

 {

 /* TODO: Add Isochronous IN endpoint disabled User functionality. */

 }

}

	Disclaimer
	Introduction
	USB Background
	CLD BF70x Audio 1.0 Library USB Enumeration Flow Chart
	CLD BF70x Audio 1.0 Library Isochronous OUT Flow Chart
	CLD BF70x Audio 1.0 Library Isochronous IN Flow Chart

	USB Audio Device Class v1.0 Background
	Isochronous Endpoint Bandwidth Allocation
	USB Audio Device Class v1.0 Control Endpoint Requests
	USB Audio Device Class v1.0 Set Request
	CLD BF70x Audio Device Class v1.0 Set Request Flow Chart

	USB Audio Device Class v1.0 Get Request
	CLD BF70x Audio Device Class v1.0 Get Request Flow Chart

	Dependencies
	Memory Footprint
	CLD BF70x Audio 1.0 Library Scope and Intended Use
	CLD Audio 1.0 Example v1.2 Description
	CLD BF70x Audio 1.0 Library API
	cld_bf70x_audio_1_0_lib_init
	Arguments
	Return Value
	Details

	cld_bf70x_audio_1_0_lib_main
	Arguments
	Return Value
	Details

	cld_bf70x_audio_1_0_lib_transmit_audio_data
	Arguments
	Return Value
	Details

	cld_bf70x_audio_1_0_lib_resume_paused_audio_data_transfer
	Arguments
	Return Value
	Details

	cld_bf70x_audio_1_0_lib_resume_paused_control_transfer
	Arguments
	Return Value
	Details

	cld_ lib_usb_connect
	Arguments
	Return Value
	Details

	cld_ lib_usb_disconnect
	Arguments
	Return Value
	Details

	cld_time_get
	Arguments
	Return Value
	Details

	cld_time_passed_ms
	Arguments
	Return Value
	Details

	cld_console
	Arguments
	Return Value
	Details

	Using the ADSP-BF707 Ez-Board
	Connections:
	Note about using UART0 and the FTDI USB to Serial Converter

	Adding the CLD BF70x Audio 1.0 Library to an Existing CrossCore Embedded Studio Project
	Using the ADI Audio EI3 Extender
	Connections:
	Audio EI3 Extender Board Support Package (Required by CLD Audio Example)

	User Firmware Code Snippets
	main.c
	user_audio.c

